
MODULE - 4
SOFTWARE PROJECT MANAGEMENT

• Software project management is an essential part of software engineering.

• The success criteria for project management obviously vary from project
to project, but, for most projects, important goals are:

1. to deliver the software to the customer at the agreed time;

2. to keep overall costs within budget

3. to deliver software that meets the customer’s expectations;

4. to maintain a coherent and well-functioning development team.

• Software engineering is different from other types of engineering in a
number of ways:

1. The product is intangible.

2. Large software projects are often “one-off” projects.

3. Software processes are variable and organization-specific.

Lakshmi M B, SCET

• It is impossible to write a standard job description for a software
project manager.

• Some of the most important factors that affect how software
projects are managed are:

1. Company size

2. Software customers

3. Software size

4. Software type

5. Organizational culture

6. Software development processes

Lakshmi M B, SCET

• The fundamental project management activities that are common to all
organizations:

1. Project planning → Project managers are responsible for planning, estimating, and
scheduling project development and assigning people to tasks.

2. Risk management → Project managers have to assess the risks that may affect a
project, monitor these risks, and take action when problems arise.

3. People management → Project managers are responsible for managing a team of
people. They have to choose people for their team and establish ways of working
that lead to effective team performance.

4. Reporting→ Project managers are usually responsible for reporting on the progress
of a project to customers and to the managers of the company developing the
software.

5. Proposal writing → The first stage in a software project may involve writing a
proposal to win a contract to carry out an item of work. The proposal describes the
objectives of the project and how it will be carried out. It usually includes cost and
schedule estimates and justifies why the project contract should be awarded to a
particular organization or team. Lakshmi M B, SCET

Risk management
• Risk management is one of the most important jobs for a project

manager.

• Risk management involves anticipating risks that might affect the
project schedule or the quality of the software being developed, and
then taking action to avoid these risks.

• Risks can be categorized according to type of risk (technical,
organizational, etc.)

Lakshmi M B, SCET

• Classification of risks according to what these risks affect:

1. Project risks → affect the project schedule or resources. An example of a
project risk is the loss of an experienced system architect.

2. Product risks → affect the quality or performance of the software being
developed. An example of a product risk is the failure of a purchased
component to perform as expected.

3. Business risks → affect the organization developing or procuring the
software. For example, a competitor introducing a new product is a
business risk.

• For large projects, you should record the results of the risk analysis in
a risk register along with a consequence analysis. This sets out the
consequences of the risk for the project, product, and business.

Lakshmi M B, SCET

Fig: Examples of common project, product, and business risks
Lakshmi M B, SCET

• Effective risk management makes it easier to cope with problems and
to ensure that these do not lead to unacceptable budget or schedule
slippage.

• For small projects, formal risk recording may not be required, but the
project manager should be aware of them.

• The specific risks that may affect a project depend on the project and
the organizational environment in which the software is being
developed.

• Software risk management is important because of the inherent
uncertainties in software development.

Lakshmi M B, SCET

• An outline of the process of risk management is presented in
Figure. It involves several stages:

1. Risk identification → You should identify possible project, product,
and business risks.

2. Risk analysis → You should assess the likelihood and consequences of
these risks.

3. Risk planning → You should make plans to address the risk, either by
avoiding it or by minimizing its effects on the project.

4. Risk monitoring → You should regularly assess the risk and your
plans for risk mitigation and revise these plans when you learn more
about the risk.

• The risk management process is an iterative process that
continues throughout a project.

Lakshmi M B, SCET

Fig: The Risk Management Process

Lakshmi M B, SCET

Risk Identification:
• Risk identification is the first stage of the risk management process.

• It is concerned with identifying the risks that could pose a major
threat to the software engineering process, the software being
developed, or the development organization.

• Risk identification may be a team process in which a team gets
together to brainstorm possible risks.

• As a starting point for risk identification, a checklist of different types
of risk may be used.

Lakshmi M B, SCET

• 6 types of risk may be included in a risk checklist:

1. Estimation risks → arise from the management estimates of the resources
required to build the system.

2. Organizational risks → arise from the organizational environment where
the software is being developed.

3. People risks → are associated with the people in the development team.

4. Requirements risks → come from changes to the customer requirements
and the process of managing the requirements change.

5. Technology risks → come from the software or hardware technologies that
are used to develop the system.

6. Tools risks → come from the software tools and other support software
used to develop the system.

Lakshmi M B, SCET

Lakshmi M B, SCET

Risk Analysis:
• During the risk analysis process, you have to consider each identified risk and make a

judgment about the probability and seriousness of that risk.

• It is not possible to make precise, numeric assessment of the probability and seriousness
of each risk.

• You should assign the risk to one of a number of bands:

1. The probability of the risk might be assessed as insignificant, low, moderate, high, or very high.

2. The effects of the risk might be assessed as catastrophic (threaten the survival of the project),
serious (would cause major delays), tolerable (delays are within allowed contingency), or
insignificant.

• You may then tabulate the results of this analysis process using a table ordered according
to the seriousness of the risk.

Lakshmi M B, SCET

Lakshmi M B, SCET

• Both the probability and the assessment of the effects of a risk may
change as more information about the risk becomes available and as
risk management plans are implemented. You should therefore
update this table during each iteration of the risk management
process.

• Once the risks have been analyzed and ranked, you should assess
which of these risks are most significant.

• In general, catastrophic risks should always be considered, as should
all serious risks that have more than a moderate probability of
occurrence.

Lakshmi M B, SCET

Risk Planning:
• The risk planning process develops strategies to manage the key risks

that threaten the project.

• For each risk, you have to think of actions that you might take to
minimize the disruption to the project if the problem identified in the
risk occurs.

• You should also think about the information that you need to collect
while monitoring the project so that emerging problems can be
detected before they become serious.

Lakshmi M B, SCET

• In risk planning, you have to ask “what-if” questions that consider
both individual risks, combinations of risks, and external factors that
affect these risks. For example, questions that you might ask are:

1. What if several engineers are ill at the same time?

2. What if an economic downturn leads to budget cuts of 20% for the project?

3. What if the performance of open-source software is inadequate and the
only expert on that open-source software leaves?

4. What if the company that supplies and maintains software components
goes out of business?

5. What if the customer fails to deliver the revised requirements as predicted?

• Based on the answers to these “what-if” questions, you may devise
strategies for managing the risks.

Lakshmi M B, SCET

• The possible risk management strategies fall into 3 categories:

1. Avoidance strategies → Following these strategies means that the
probability that the risk will arise is reduced. An example of a risk avoidance
strategy is the strategy for dealing with defective components.

2. Minimization strategies → Following these strategies means that the
impact of the risk is reduced. An example of a risk minimization strategy is
the strategy for staff illness.

3. Contingency plans → Following these strategies means that you are
prepared for the worst and have a strategy in place to deal with it. An
example of a contingency strategy is the strategy for organizational financial
problems.

• The strategies used in critical systems ensure reliability, security, and
safety, where you must avoid, tolerate, or recover from failures.

Lakshmi M B, SCET

• It is best to use a strategy that avoids the risk.

• If this is not possible, you should use a strategy that reduces the
chances that the risk will have serious effects.

• Finally, you should have strategies in place to cope with the risk if it
arises. These should reduce the overall impact of a risk on the project
or product.

Lakshmi M B, SCET

Lakshmi M B, SCET

Risk Monitoring:
• Risk monitoring is the process of checking that your assumptions

about the product, process, and business risks have not changed.

• You should regularly assess each of the identified risks to decide
whether or not that risk is becoming more or less probable.

• You should also think about whether or not the effects of the risk
have changed.

• To do this, you have to look at other factors, such as the number of
requirements change requests, which give you clues about the risk
probability and its effects. These factors are dependent on the types
of risk.

Lakshmi M B, SCET

Lakshmi M B, SCET

• You should monitor risks regularly at all stages in a project.

• At every management review, you should consider and discuss each
of the key risks separately.

• You should decide if the risk is more or less likely to arise and if the
seriousness and consequences of the risk have changed.

Lakshmi M B, SCET

Managing people
• The people working in a software organization are its greatest assets.

• It is expensive to recruit and retain good people.

• Software managers have to ensure that the engineers working on a project are as
productive as possible.

• It is important that software project managers understand the technical issues
that influence the work of software development.

• Software engineers often have strong technical skills but may lack the softer skills
that enable them to motivate and lead a project development team.

• As a project manager, you should be aware of the potential problems of people
management and should try to develop people management skills.

Lakshmi M B, SCET

• 4 critical factors that influence the relationship between a manager and the people

that he or she manages:

1. Consistency→ All the people in a project team should be treated in a

comparable way. No one expects all rewards to be identical, but people should

not feel that their contribution to the organization is undervalued.

2. Respect → Different people have different skills, and managers should respect

these differences.

3. Inclusion → People contribute effectively when they feel that others listen to

them and take account of their proposals. It is important to develop a working

environment where all views, even those of the least experienced staff, are

considered.

4. Honesty→ As a manager, you should always be honest about what is going

well and what is going badly in the team. You should also be honest about

your level of technical knowledge and be willing to defer to staff with more

knowledge when necessary.
Lakshmi M B, SCET

Motivating People:
• As a project manager, you need to motivate the people who work

with you so that they will contribute to the best of their abilities.

• In practice, motivation means organizing work and its environment to
encourage people to work as effectively as possible.

• To provide this encouragement, you should understand a little about
what motivates people.

• People are motivated by satisfying their needs. These needs are
arranged in a series of levels, as shown in Figure.

Lakshmi M B, SCET

Lakshmi M B, SCET

• The lower levels of this hierarchy represent fundamental needs for food,
sleep, and so on, and the need to feel secure in an environment.

• Social need is concerned with the need to feel part of a social grouping.

• Esteem need represents the need to feel respected by others, and self-
realization need is concerned with personal development.

• People need to satisfy lower-level needs such as hunger before the more
abstract, higher-level needs.

• People working in software development organizations are not usually
hungry, thirsty, or physically threatened by their environment. Therefore,
making sure that peoples’ social, esteem, and self-realization needs are
satisfied is most important from a management point of view.

Lakshmi M B, SCET

1. To satisfy social needs, you need to give people time to meet their co-
workers and provide places for them to meet. This is relatively easy when
all of the members of a development team work in the same place.
Social networking systems and teleconferencing can be used for remote
communications.

2. To satisfy esteem needs, you need to show people that they are valued
by the organization. Public recognition of achievements is a simple and
effective way of doing this.

3. Finally, to satisfy self-realization needs, you need to give people
responsibility for their work, assign them demanding (but not
impossible) tasks, and provide opportunities for training and
development where people can enhance their skills. Training is an
important motivating influence as people like to gain new knowledge
and learn new skills.

Lakshmi M B, SCET

• Maslow’s model of motivation takes an exclusively personal viewpoint
on motivation.

• It does not take adequate account of the fact that people feel
themselves to be part of an organization, a professional group, and
one or more cultures.

• Being a member of a cohesive group is highly motivating for most
people.

• Therefore, as a manager, you also have to think about how a group as
a whole can be motivated.

Lakshmi M B, SCET

Lakshmi M B, SCET

• Psychological personality type also influences motivation.

• Bass and Dunteman (Bass and Dunteman 1963) identified 3
classifications for professional workers:

1. Task-oriented people → who are motivated by the work they do. In
software engineering, these are people who are motivated by the
intellectual challenge of software development.

2. Self-oriented people → who are principally motivated by personal
success and recognition. They are interested in software development
as a means of achieving their own goals. They often have longer-term
goals and they wish to be successful in their work to help realize
these goals.

3. Interaction-oriented people → who are motivated by the presence
and actions of co-workers.

Lakshmi M B, SCET

• Research has shown that interaction-oriented personalities usually

like to work as part of a group, whereas task-oriented and self-

oriented people usually prefer to act as individuals.

• People Capability Maturity Model (P-CMM) → is a framework for

assessing how well organizations manage the development of their

staff. It highlights best practice in people management and provides a

basis for organizations to improve their people management

processes. It is best suited to large rather than small, informal

companies.

Lakshmi M B, SCET

teamwork
• As it is impossible for everyone in a large group to work together on a

single problem, large teams are usually split into a number of smaller

groups.

• Each group is responsible for developing part of the overall system.

• The best size for a software engineering group is 4 to 6 members, and

they should never have more than 12 members.

• When groups are small, communication problems are reduced.

Lakshmi M B, SCET

• Putting together a group that has the right balance of technical skills,
experience, and personalities is a critical management task.

• A good group is cohesive and thinks of itself as a strong, single unit.

• The people involved are motivated by the success of the group as well
as by their own personal goals.

• In a cohesive group, members think of the group as more important
than the individuals who are group members.
➢They are loyal to the group.

➢They identify with group goals and other group members.

➢They attempt to protect the group, as an entity, from outside interference.
This makes the group robust and able to cope with problems and unexpected
situations.

Lakshmi M B, SCET

• The benefits of creating a cohesive group are:
1. The group can establish its own quality standards.

2. Individuals learn from and support each other.

3. Knowledge is shared.

4. Refactoring and continual improvement is encouraged.

• Good project managers should always try to encourage group
cohesiveness.

• They may try to establish a sense of group identity by naming the group
and establishing a group identity and territory.

• One of the most effective ways of promoting cohesion is to be inclusive
i.e., you should treat group members as responsible and trustworthy, and
make information freely available.

Lakshmi M B, SCET

• An effective way of making people feel valued and part of a group is

to make sure that they know what is going on.

Lakshmi M B, SCET

• Given a stable organizational and project environment, the 3 factors

that have the biggest effect on team working are:

1. The people in the group (Selecting group members)

2. The way the group is organized (Group organizations)

3. Technical and managerial communications (Group communications)

Lakshmi M B, SCET

Selecting Group Members:
• A manager or team leader’s job is to create a cohesive group and organize

that group so that they work together effectively.

• This task involves selecting a group with the right balance of technical skills
and personalities.

• Technical knowledge and ability should not be the only factor used to
select group members.

• People who are motivated by the work are likely to be the strongest
technically.

• People who are self-oriented will probably be best at pushing the work
forward to finish the job.

• People who are interaction-oriented help facilitate communications within
the group.

Lakshmi M B, SCET

• The project manager has to control the group so that individual goals
do not take precedence over organizational and group objectives.

• This control is easier to achieve if all group members participate in
each stage of the project.

• Individual initiative is most likely to develop when group members are
given instructions without being aware of the part that their task
plays in the overall project.

• If all the members of the group are involved in the design from the
start, they are more likely to understand why design decisions have
been made. They may then identify with these decisions rather than
oppose them.

Lakshmi M B, SCET

Lakshmi M B, SCET

Group Organization:
• The way a group is organized affects the group’s decisions, the ways

information is exchanged, and the interactions between the
development group and external project stakeholders.

• Project managers are often responsible for selecting the people in the
organization who will join their software engineering team.

• Getting the best possible people in this process is very important as
poor selection decisions may be a serious risk to the project.

• Key factors that should influence the selection of staff are education
and training, application domain and technology experience,
communication ability, adaptability, and problem solving ability.

Lakshmi M B, SCET

• Important organizational questions for project managers include the
following:

1. Should the project manager be the technical leader of the group?

2. Who will be involved in making critical technical decisions, and how will
these decisions be made? Will decisions be made by the system architect or
the project manager or by reaching consensus among a wider range of
team members?

3. How will interactions with external stakeholders and senior company
management be handled?

4. How can groups integrate people who are not co-located?

5. How can knowledge be shared across the group?

Lakshmi M B, SCET

Lakshmi M B, SCET

Informal Groups Hierarchical Groups

1. Small programming groups are usually organized.
2. Group leader gets involved in the software

development with the other group members.
3. The group as a whole discusses the work to be

carried out, and tasks are allocated according to
ability and experience.

4. More senior group members may be responsible
for the architectural design.

5. Detailed design and implementation is the
responsibility of the team member who is allocated
to a particular task.

6. Groups are very successful, particularly when most
group members are experienced and competent.
Such a group makes decisions which improves
cohesiveness and performance.

7. With no experienced engineers to direct the work,
the result can be a lack of coordination between
group members and, possibly, eventual project
failure.

1. Group leader is at the top of the hierarchy.
2. Group leader has more formal authority than the

group members and so can direct their work.
3. There is a clear organizational structure.
4. Decisions are made toward the top of the hierarchy

and implemented by people lower down.
5. Communications are primarily instructions from

senior staff; the people at lower levels of the
hierarchy have relatively little communication with
the managers at the upper levels.

6. These groups can work well when a well-
understood problem can be easily broken down
into software components that can be developed in
different parts of the hierarchy.

7. This grouping allows for rapid decision making.

• In software development, effective team communications at all levels is
essential:

1. Changes to the software often require changes to several parts of the system, and
this requires discussion and negotiation at all levels in the hierarchy.

2. Software technologies change so fast that more junior staff may know more about
new technologies than experienced staff. Top-down communications may mean
that the project manager does not find out about the opportunities of using these
new technologies. More junior staff may become frustrated because of what they
see as old-fashioned technologies being used for development.

• A major challenge facing project managers is the difference in technical
ability between group members.

• i.e., adopting a group model that is based on individual experts can pose
significant risks.

Lakshmi M B, SCET

Group Communications:
• It is absolutely essential that group members communicate effectively

and efficiently with each other and with other project stakeholders.

• Good communication also helps strengthen group cohesiveness.

• Group members:
1. Exchange information on the status of their work, the design decisions that

have been made, and changes to previous design decisions.

2. Resolve problems that arise with other stakeholders and inform these
stakeholders of changes to the system, the group, and delivery plans.

3. Come to understand the motivations, strengths, and weaknesses of other
people in the group.

Lakshmi M B, SCET

• The effectiveness and efficiency of communications are influenced by:

1. Group size → As a group gets bigger, it gets harder for members to
communicate effectively. The number of one-way communication links is
n * (n − 1), where n is the group size.

2. Group structure → People in informally structured groups communicate
more effectively than people in groups with a formal, hierarchical structure.

3. Group composition → People with the same personality may clash, and, as
a result, communications can be inhibited.

4. The physical work environment → The organization of the workplace is a
major factor in facilitating or inhibiting communications.

5. The available communication channels → There are many different forms
of communication—face to face, email messages, formal documents,
telephone, and technologies such as social networking and wikis.

Lakshmi M B, SCET

• Effective communication is achieved when communications are two-way and
the people involved can discuss issues and information and establish a
common understanding of proposals and problems.

• All this can be done through meetings, although these meetings are often
dominated by powerful personalities.

• Informal discussions when a manager meets with the team for coffee are
sometimes more effective.

• Wikis and blogs allow project members and external stakeholders to
exchange information, irrespective of their location. They help manage
information and keep track of discussion threads, which often become
confusing when conducted by email.

• You can also use instant messaging and teleconferences, which can be easily
arranged, to resolve issues that need discussion.

Lakshmi M B, SCET

MODULE 4
Software Project Management - Risk management, Managing people,
Teamwork. Project Planning, Software pricing, Plan-driven development,
Project scheduling, Agile planning. Estimation techniques, COCOMO cost
modeling. Configuration management, Version management, System building,
Change management, Release management, Agile software management -
SCRUM framework. Kanban methodology and lean approaches.

Department of CSE, SAINTGITS College of Engineering

Project planning
Software pricing

Project scheduling

Agile planning

Estimation techniques

COCOMO cost modeling

Department of CSE, SAINTGITS College of Engineering

Project planning

• Project planning is one of the most important jobs of a software project manager.

• As a manager, you have to break down the work into parts and assign them to project team members,
anticipate problems that might arise, and prepare tentative solutions to those problems.

• The project plan, which is created at the start of a project and updated as the project progresses, is used to
show how the work will be done and to assess progress on the project.

• Project planning takes place at three stages in a project life cycle:

1. At the proposal stage, when you are bidding for a contract to develop or provide a software system. You
need a plan at this stage to help you decide if you have the resources to complete the work and to work
out the price that you should quote to a customer.

2. During the project startup phase, when you have to plan who will work on the project, how the project
will be broken down into increments, how resources will be allocated across your company, and so on.
Here, you have more information than at the proposal stage, and you can therefore refine the initial
effort estimates that you have prepared.

3. Periodically throughout the project, when you update your plan to reflect new information about the
software and its development. You learn more about the system being implemented and the capabilities
of your development team. As software requirements change, the work breakdown has to be altered and
the schedule extended.

Department of CSE, SAINTGITS College of Engineering

Project planning

• Three main parameters should be used when computing the costs of a
software development project:
■ effort costs (the costs of paying software engineers and managers);
■ hardware and software costs, including hardware maintenance and software
support; and
■ travel and training costs.

For most projects, the biggest cost is the effort cost.

You have to estimate the total effort (in person-months) that is likely to be
required to complete the work of a project.

Obviously, you have limited information to make such an estimate. You
therefore make the best possible estimate and then add contingency (extra
time and effort) in case your initial estimate is optimistic

Department of CSE, SAINTGITS College of Engineering

Project planning

• For commercial systems, you normally use commodity hardware, which is relatively cheap. However,
software costs can be significant if you have to license middleware and platform software.

• Extensive travel may be needed when a project is developed at different sites. While travel costs themselves
are usually a small fraction of the effort costs, the time spent traveling is often wasted and adds significantly
to the effort costs of the project. You can use electronic meeting systems and other collaborative software to
reduce travel.

• Once a contract to develop a system has been awarded, the outline project plan for the project has to be
refined to create a project startup plan. At this stage, you should know more about the requirements for this
system. You use this plan as a basis for allocating resources to the project from within the organization and
to help decide if you need to hire new staff.

• The plan should also define project monitoring mechanisms. You must keep track of the progress of the
project and compare actual and planned progress and costs.

• The project plan always evolves during the development process because of requirements changes,
technology issues, and development problems.

• .If an agile method is used, there is still a need for a project startup plan because regardless of the approach
used, the company still needs to plan how resources will be allocated to a project

Department of CSE, SAINTGITS College of Engineering

Software pricing

• In principle, the price of a software
system developed for a customer is
simply the cost of development plus
profit for the developer.

• In practice, however, the relationship
between the project cost and the price
quoted to the customer is not usually so
simple.

• When calculating a price, you take
broader organizational, economic,
political, and business considerations
into account (Figure).

• You need to think about organizational
concerns, the risks associated with the
project, and the type of contract that
will be used. These issues may cause the
price to be adjusted upward or
downward

Factors affecting software pricing

Department of CSE, SAINTGITS College of Engineering

Software pricing

• Pricing to win means that a company has some idea of the price that the
customer expects to pay and makes a bid for the contract based on the
customer’s expected price. This may seem unethical and unbusinesslike, but it
does have advantages for both the customer and the system provider.

• A project cost is agreed on the basis of an outline proposal. Negotiations then
take place between client and customer to establish the detailed project
specification. This specification is constrained by the agreed cost. The buyer and
seller must agree on what is acceptable system functionality.

• The fixed factor in many projects is not the project requirements but the cost.
The requirements may be changed so that the project costs remain within
budget.

• This approach has advantages for both the software developer and the customer.
The requirements are negotiated to avoid requirements that are difficult to
implement and potentially very expensive. Flexible requirements make it easier
to reuse software

Department of CSE, SAINTGITS College of Engineering

Plan-driven development
Project plans

The planning process

Department of CSE, SAINTGITS College of Engineering

Plan-driven development

• Plan-driven or plan-based development is an approach to software engineering where the
development process is planned in detail.

• A project plan is created that records the work to be done, who will do it, the development
schedule, and the work products.

• Managers use the plan to support project decision making and as a way of measuring progress.

• Agile development involves a different planning process, where decisions are delayed.

• The problem with plan-driven development is that early decisions have to be revised because of
changes to the environments in which the software is developed and used.

• Delaying planning decisions avoids unnecessary rework.

• However, the arguments in favor of a plan-driven approach are that early planning allows
organizational issues (availability of staff, other projects, etc.) to be taken into account. Potential
problems and dependencies are discovered before the project starts, rather than once the project
is underway.

• The best approach to project planning involves a sensible mixture of plan-based and agile
development.

Department of CSE, SAINTGITS College of Engineering

Project plans

• In a plan-driven development project, a project plan sets out the resources available to the project, the work
breakdown, and a schedule for carrying out the work.

• The plan should identify the approach that is taken to risk management as well as risks to the project and
the software under development.

• The details of project plans vary depending on the type of project and organization but plans normally
include the following sections:

1. Introduction: Briefly describes the objectives of the project and sets out the constraints (e.g., budget, time) that affect
the management of the project.

2. Project organization :Describes the way in which the development team is organized, the people involved, and their roles
in the team.

3. Risk analysis: Describes possible project risks, the likelihood of these risks arising, and the risk reduction strategies that
are proposed.

4. Hardware and software resource requirements: Specifies the hardware and support software required to carry out the
development. If hardware has to be purchased, estimates of the prices and the delivery schedule may be included.

5. Work breakdown: Sets out the breakdown of the project into activities and identifies the inputs to and the outputs from
each project activity.

6. Project schedule: Shows the dependencies between activities, the estimated time required to reach each milestone, and
the allocation of people to activities. The ways in which the schedule may be presented are discussed in the next section
of the chapter.

7. Monitoring and reporting mechanisms: Defines the management reports that should be produced, when these should
be produced, and the project monitoring mechanisms to be used.

Department of CSE, SAINTGITS College of Engineering

Project plans

Project plan supplements

The main project plan should always include a project risk assessment and a schedule for the
project.
In addition, you may develop a number of supplementary plans for activities such as testing and
configuration management.
Figure shows some supplementary plans that may be developed.
These are all usually needed in large projects developing large, complex systems

Department of CSE, SAINTGITS College of Engineering

The planning process

• Project planning is an iterative
process that starts when you create
an initial project plan during the
project startup phase.

• Figure is a UML activity diagram that
shows a typical workflow for a
project planning process.

• Plan changes are inevitable. As
more information about the system
and the project team becomes
available during the project, you
should regularly revise the plan to
reflect requirements, schedule, and
risk changes. Changing business
goals also leads to changes in
project plans.

Department of CSE, SAINTGITS College of Engineering

The planning process

• At the beginning of a planning process, you should assess the constraints affecting the project. These constraints are the required delivery date, staff
available, overall budget, available tools, and so on.

• In conjunction with this assessment, you should also identify the project milestones and deliverables. Milestones are points in the schedule against
which you can assess progress, for example, the handover of the system for testing. Deliverables are work products that are delivered to the customer,
for example, a requirements document for the system.

• The process then enters a loop that terminates when the project is complete.

• You draw up an estimated schedule for the project, and the activities defined in the schedule are initiated or are approved to continue.

• After some time (usually about two to three weeks), you should review progress and note discrepancies from the planned schedule. Because initial
estimates of project parameters are inevitably approximate, minor slippages are normal and you will have to make modifications to the original plan.

• [Problems of some description always arise during a project, and these lead to project delays. Your initial assumptions and scheduling should therefore
be pessimistic and take unexpected problems into account.]

• [You should include contingency in your plan so that if things go wrong, then your delivery schedule is not seriously disrupted.]

• If there are serious problems with the development work that are likely to lead to significant delays, you need to initiate risk mitigation actions to
reduce the risks of project failure. In conjunction with these actions, you also have to re-plan the project. This may involve renegotiating the project
constraints and deliverables with the customer.

• A new schedule of when work should be completed also has to be established and agreed to with the customer.

• If this renegotiation is unsuccessful or the risk mitigation actions are ineffective, then you should arrange for a formal project technical review. The
objectives of this review are to find an alternative approach that will allow the project to continue.

• The outcome of a review may be a decision to cancel a project.

• Management may then decide to stop software development or to make major changes to the project to reflect the changes in the organizational
objectives

Department of CSE, SAINTGITS College of Engineering

Project scheduling
Schedule presentation

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• Project scheduling is the process of deciding how the work in a
project will be organized as separate tasks, and when and how these
tasks will be executed.

• You estimate the calendar time needed to complete each task and the
effort required, and you suggest who will work on the tasks that have
been identified.

• You also have to estimate the hardware and software resources that
are needed to complete each task.

• An initial project schedule is usually created during the project
startup phase. This schedule is then refined and modified during
development planning

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• Both plan-based and agile processes need an initial project schedule,
although less detail is included in an agile project plan.

• This initial schedule is used to plan how people will be allocated to
projects and to check the progress of the project against its
contractual commitments.

• In traditional development processes, the complete schedule is
initially developed and then modified as the project progresses. In
agile processes, there has to be an overall schedule that identifies
when the major phases of the project will be completed. An iterative
approach to scheduling is then used to plan each phase.

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• Scheduling in plan-driven projects (Figure) involves breaking down the total work involved in a project into separate tasks and estimating the time
required to complete each task.

• Tasks should normally last at least a week and no longer than 2 months.

• The maximum amount of time for any task should be 6 to 8 weeks. If a task will take longer than this, it should be split into subtasks for project
planning and scheduling.

• Some of these tasks are carried out in parallel, with different people working on different components of the system. You have to coordinate these
parallel tasks and organize the work so that the workforce is used optimally and you don’t introduce unnecessary dependencies between the tasks.

• It is important to avoid a situation where the whole project is delayed because a critical task is unfinished.

• When you are estimating schedules, you must take into account the possibility that things will go wrong. People working on a project may fall ill or
leave, hardware may fail, and essential support software or hardware may be delivered late.

• If the project is new and technically advanced, parts of it may turn out to be more difficult and take longer than originally anticipated.

• A good rule of thumb is to estimate as if nothing will go wrong and then increase your estimate to cover anticipated problems.

• A further contingency factor to cover unanticipated problems may also be added to the estimate. This extra contingency factor depends on the type
of project, the process parameters (deadline, standards, etc.), and the quality and experience of the software engineers working on the project.

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• Project schedules may simply be
documented in a table or
spreadsheet showing the tasks,
estimated effort, duration, and task
dependencies (Figure 11).

• However, this style of presentation
makes it difficult to see the
relationships and dependencies
between the different activities.

• For this reason, alternative
graphical visualizations of project
schedules have been developed
that are often easier to read and
understand. Two types of
visualization are commonly used: Figure 11: Tasks, durations, and

dependencies

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• Two types of visualization are commonly used:

1. Calendar-based bar charts show who is responsible for each activity, the expected elapsed
time, and when the activity is scheduled to begin and end. Bar charts are also called Gantt
charts, after their inventor, Henry Gantt.

2. Activity networks show the dependencies between the different activities making up a project.
These networks are described in an associated web section.

Project activities are the basic planning element.

Each activity has:

■ a duration in calendar days or months;

■ an effort estimate, which shows the number of person-days or person-months to complete the
work;

■ a deadline by which the activity should be complete; and

■ a defined endpoint, which might be a document, the holding of a review meeting, the successful
execution of all tests, or the like

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• When planning a project, you may decide to define project milestones.

• A milestone is a logical end to a stage of the project where the progress of the work can be
reviewed.

• Each milestone should be documented by a brief report (often simply an email) that summarizes
the work done and whether or not the work has been completed as planned.

• Milestones may be associated with a single task or with groups of related activities.

• Some activities create project deliverables—outputs that are delivered to the software customer.
Usually, the deliverables that are required are specified in the project contract, and the
customer’s view of the project’s progress depends on these deliverables.

• Milestones and deliverables are not the same thing. Milestones are short reports that are used
for progress reporting, whereas deliverables are more substantial project outputs such as a
requirements document or the initial implementation of a system.

• The estimated duration for some tasks is more than the effort required and vice versa. If the
effort is less than the duration, the people allocated to that task are not working full time on it. If
the effort exceeds the duration, this means that several team members are working on the task at
the same time.

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• Figure 12 takes the information
in Figure 11 and presents the
project schedule as a bar chart
showing a project calendar and
the start and finish dates of
tasks.

• Reading from left to right, the
bar chart clearly shows when
tasks start and end. The
milestones (M1, M2, etc.) are
also shown on the bar chart.
Notice that tasks that are
independent may be carried
out in parallel. For example,
tasks T1, T2, and T4 all start at
the beginning of the project

Figure 12: Activity bar chart

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• As well as planning the delivery
schedule for the software, project
managers have to allocate
resources to tasks.

• The key resource is, of course, the
software engineers who will do the
work. They have to be assigned to
project activities.

• The resource allocation can be
analyzed by project management
tools, and a bar chart can be
generated showing when staff are
working on the project (Figure 13).

• People may be working on more
than one task at the same time, and
sometimes they are not working on
the project.

• They may be on holiday, working on
other projects, or attending training
courses. Part-time assignments are
shown using a diagonal line
crossing the bar

Figure 13: Staff allocation
chart

Department of CSE, SAINTGITS College of Engineering

Project scheduling

• Large organizations usually employ a number of specialists who work on a project when needed.

• The use of specialists is unavoidable when complex systems are being developed, but it can lead to scheduling problems.

• If one project is delayed while a specialist is working on it, this may affect other projects where the specialist is also required.
These projects may be delayed because the specialist is not available.

• If a task is delayed, later tasks that are dependent on it may be affected. They cannot start until the delayed task is completed.

• Delays can cause serious problems with staff allocation, especially when people are working on several projects at the same time.

• If a task (T) is delayed, the people allocated to it may be assigned to other work (W). To complete this work may take longer than
the delay, but, once assigned, they cannot simply be reassigned back to the original task. This may then lead to further delays in T
as they complete W.

• Normally, you should use a project planning tool, such as the Basecamp or Microsoft project, to create, update, and analyze
project schedule information.

• Project management tools usually expect you to input project information into a table, and they create a database of project
information.

• Bar charts and activity charts can then be generated automatically from this database.

Department of CSE, SAINTGITS College of Engineering

Agile planning

Department of CSE, SAINTGITS College of Engineering

Agile planning

• Agile methods of software development are iterative approaches
where the software is developed and delivered to customers in
increments.

• Unlike plan-driven approaches, the functionality of these increments
is not planned in advance but is decided during the development.

• The decision on what to include in an increment depends on progress
and on the customer’s priorities.

• The argument for this approach is that the customer’s priorities and
requirements change, so it makes sense to have a flexible plan that
can accommodate these changes

Department of CSE, SAINTGITS College of Engineering

Agile planning

• Agile development methods such as Scrum and Extreme
Programming have a two-stage approach to planning, corresponding
to the startup phase in plan-driven development and development
planning:

1. Release planning, which looks ahead for several months and
decides on the features that should be included in a release of a
system.

2. Iteration planning, which has a shorter term outlook and focuses on
planning the next increment of a system. This usually represents 2
to 4 weeks of work for the team.

Department of CSE, SAINTGITS College of Engineering

Agile planning

Figure 2: The planning game

Department of CSE, SAINTGITS College of Engineering

Agile planning

• Scrum approach- iteration planning

• Extreme programming- User stories

• The basis of the planning game (Figure 2- previous slide) is a set of user stories that cover all of the functionality to be included in the final system.
The development team and the software customer work together to develop these stories. The team members read and discuss the stories and rank
them based on the amount of time they think it will take to implement the story.

• Some stories may be too large to implement in a single iteration, and these are broken down into smaller stories. The problem with ranking stories is
that people often find it difficult to estimate how much effort or time is needed to do something. To make this easier, relative ranking may be used.

• The team compares stories in pairs and decides which will take the most time and effort, without assessing exactly how much effort will be required.

• At the end of this process, the list of stories has been ordered, with the stories at the top of the list taking the most effort to implement.

• The team then allocates notional effort points to all of the stories in the list. A complex story may have 8 points and a simple story 2 points.

• Once the stories have been estimated, the relative effort is translated into the first estimate of the total effort required by using the idea of “velocity.”

• Velocity is the number of effort points implemented by the team, per day. This can be estimated either from previous experience or by developing
one or two stories to see how much time is required.

• The velocity estimate is approximate but is refined during the development process.

• Once you have a velocity estimate, you can calculate the total effort in person-days to implement the system.

Department of CSE, SAINTGITS College of Engineering

Agile planning

• Release planning involves selecting and refining the stories that will reflect the
features to be implemented in a release of a system and the order in which the
stories should be implemented. The customer has to be involved in this process.
A release date is then chosen, and the stories are examined to see if the effort
estimate is consistent with that date. If not, stories are added or removed from
the list.

• Iteration planning is the first stage in developing a deliverable system increment.
Stories to be implemented during that iteration are chosen, with the number of
stories reflecting the time to deliver an workable system (usually 2 or 3 weeks)
and the team’s velocity. When the delivery date is reached, the development
iteration is complete, even if all of the stories have not been implemented. The
team considers the stories that have been implemented and adds up their effort
points. The velocity can then be recalculated, and this measure is used in
planning the next version of the system.

Department of CSE, SAINTGITS College of Engineering

Agile planning

• At the start of each development iteration, there is a task planning stage where the developers
break down stories into development tasks. A development task should take 4–16 hours. All of
the tasks that must be completed to implement all of the stories in that iteration are listed. The
individual developers then sign up for the specific planning tasks that they will implement.

• Each developer knows their individual velocity and so should not sign up for more tasks than they
can implement in the time allotted

• This approach to task allocation has two important benefits:

1. The whole team gets an overview of the tasks to be completed in an iteration. They therefore
have an understanding of what other team members are doing and who to talk to if task
dependencies are identified.

2. Individual developers choose the tasks to implement; they are not simply allocated tasks by a
project manager. They therefore have a sense of ownership in these tasks, and this is likely to
motivate them to complete the task.

Halfway through an iteration, progress is reviewed. At this stage, half of the story effort points
should have been completed.

Department of CSE, SAINTGITS College of Engineering

Agile planning

Advantages:

• This approach to planning has the advantage that a software increment is always delivered at the end of each project iteration.

• If the features to be included in the increment cannot be completed in the time allowed, the scope of the work is reduced.

• The delivery schedule is never extended..

Disadvantages

• A major difficulty in agile planning is that it relies on customer involvement and availability.

• This involvement can be difficult to arrange, as customer representatives sometimes have to prioritize other work and are not
available for the planning game.

• Furthermore, some customers may be more familiar with traditional project plans and may find it difficult to engage in an agile
planning process.

 Agile planning works well with small, stable development teams that can get together and discuss the stories to be implemented.

 However, where teams are large and/or geographically distributed, or when team membership changes frequently, it is practically
impossible for everyone to be involved in the collaborative planning that is essential for agile project management.

 Consequently, large projects are usually planned using traditional approaches to project management

Department of CSE, SAINTGITS College of Engineering

Estimation techniques
Experience-based techniques

Algorithmic cost modeling

Department of CSE, SAINTGITS College of Engineering

Estimation techniques

• Estimating project schedules is difficult. You have to make initial estimates on
the basis of an incomplete user requirements definition.

• There are so many uncertainties that it is impossible to estimate system
development costs accurately during the early stages of a project.
Nevertheless, organizations need to make software effort and cost estimates.

• Two types of techniques can be used for making estimates:

1. Experience-based techniques: The estimate of future effort
requirements is based on the manager’s experience of past projects and
the application domain. Essentially, the manager makes an informed
judgment of what the effort requirements are likely to be.

2. Algorithmic cost modeling: In this approach, a formulaic approach is
used to compute the project effort based on estimates of product
attributes, such as size, process characteristics, and experience of staff
involvedIn

 In both cases, you need to use your judgment to estimate either the effort
directly or the project and product characteristics. In the startup phase of a
project, these estimates have a wide margin of error.

 During development planning, estimates become more and more accurate as
the project progresses

Department of CSE, SAINTGITS College of Engineering

Estimate uncertainty

Estimation techniques- Experience-based
techniques
• Experience-based techniques rely on the manager’s experience of past

projects and the actual effort expended in these projects on activities that
are related to software development.

• Typically, you identify the deliverables to be produced in a project and the
different software components or systems that are to be developed.

• You document these in a spreadsheet, estimate them individually, and
compute the total effort required.

• It usually helps to get a group of people involved in the effort estimation
and to ask each member of the group to explain their estimate.

• This often reveals factors that others have not considered, and you then
iterate toward an agreed group estimate.

Department of CSE, SAINTGITS College of Engineering

Estimation techniques

• The difficulty with experience-based techniques is that a new software
project may not have much in common with previous projects.

• Software development changes very quickly, and a project will often use
unfamiliar techniques such as web services, application system
configuration, or HTML5.

• If you have not worked with these techniques, your previous experience
may not help you to estimate the effort required, making it more difficult
to produce accurate costs and schedule estimates.

• It is impossible to say whether experience-based or algorithmic
approaches are more accurate.

• Project estimates are often self-fulfilling. The estimate is used to define the
project budget, and the product is adjusted so that the budget figure is
realized.

Department of CSE, SAINTGITS College of Engineering

Algorithmic cost modeling

• Algorithmic cost modeling uses a mathematical formula to predict project costs based on estimates of the
project size, the type of software being developed, and other team, process, and product factors.

• Algorithmic cost models are developed by analyzing the costs and attributes of completed projects, then
finding the closest-fit formula to the actual costs incurred. Algorithmic cost models are primarily used to
make estimates of software development costs.

• Most algorithmic models for estimating effort in a software project are based on a simple formula:

• A: a constant factor, which depends on local organizational practices and the type of software that is
developed.

• Size: an assessment of the code size of the software or a functionality estimate expressed in function or
application points.

• B: represents the complexity of the software and usually lies between 1 and 1.5.

• M: is a factor that takes into account process, product and development attributes, such as the
dependability requirements for the software and the experience of the development team.

These attributes may increase or decrease the overall difficulty of developing the system.

Department of CSE, SAINTGITS College of Engineering

Algorithmic cost modeling

• The number of lines of source code (SLOC) in the delivered system is the
fundamental size metric that is used in many algorithmic cost models.

• To estimate the number of lines of code in a system, you may use a
combination of approaches:

1. Compare the system to be developed with similar systems and use their
code size as the basis for your estimate.

2. Estimate the number of function or application points in the system and
formulaically convert these to lines of code in the programming language
used.

3. Rank the system components using judgment of their relative sizes and
use a known reference component to translate this ranking to code sizes.

Department of CSE, SAINTGITS College of Engineering

Algorithmic cost modeling

• Most algorithmic estimation models have an exponential component
(B in the above equation) that increases with the size and complexity
of the system.

• This reflects the fact that costs do not usually increase linearly with
project size.

• As the size and complexity of the software increase, extra costs are
incurred because of the communication overhead of larger teams,
more complex configuration management, more difficult system
integration, and so on.

• The more complex the system, the more these factors affect the cost.

Department of CSE, SAINTGITS College of Engineering

Algorithmic cost modeling

• The idea of using a scientific and objective approach to cost estimation is an attractive one, but all algorithmic cost models suffer
from two key problems:

1. It is practically impossible to estimate Size accurately at an early stage in a project, when only the specification is available.
Function-point and application point estimates are easier to produce than estimates of code size but are also usually
inaccurate.

2. The estimates of the complexity and process factors contributing to B and M are subjective. Estimates vary from one person to
another, depending on their background and experience of the type of system that is being developed.

Accurate code size estimation is difficult at an early stage in a project because the size of the final program depends on design
decisions that may not have been made when the estimate is required.

The programming language used for system development also affects the number of lines of code to be developed. A language like
Java might mean that more lines of code are necessary than if C (say) was used. However, this extra code allows more compile-time
checking, so validation costs are likely to be reduced. It is not clear how this should be taken into account in the estimation process.

Algorithmic cost models are a systematic way to estimate the effort required to develop a system. However, these models are
complex and difficult to use.

Another barrier that discourages the use of algorithmic models is the need for calibration. Model users should calibrate their model
and the attribute values using their own historical project data, as this reflects local practice and experience.

If you use an algorithmic cost estimation model, you should develop a range of estimates (worst, expected, and best) rather than a
single estimate and apply the costing formula to all of them.

Department of CSE, SAINTGITS College of Engineering

COCOMO cost modeling
The application composition model

The early design model

The reuse model

The post-architecture level

Department of CSE, SAINTGITS College of Engineering

COCOMO cost modeling

• The best known algorithmic cost modeling technique and tool is the COCOMO II model.

• This empirical model was derived by collecting data from a large number of software projects of
different sizes.

• These data were analyzed to discover the formulas that were the best fit to the observations.

• These formulas linked the size of the system and product, project, and team factors to the effort
to develop the system.

• COCOMO II is a freely available model that is supported with open-source tools.

• COCOMO II was developed from earlier COCOMO (Constructive Cost Modeling) cost estimation
models, which were largely based on original code development (B. W. Boehm 1981; B. Boehm
and Royce 1989).

• The COCOMO II model takes into account modern approaches to software development, such as
rapid development using dynamic languages, development with reuse, and database
programming.

• COCOMO II embeds several submodels based on these techniques, which produce increasingly
detailed estimates.

Department of CSE, SAINTGITS College of Engineering

The submodels that are part of the COCOMO II model are: (figure in the next slide)

1. An application composition model: This models the effort required to develop systems that are
created from reusable components, scripting, or database programming. Software size
estimates are based on application points, and a simple size/productivity formula is used to
estimate the effort required.

2. An early design model: This model is used during early stages of the system design after the
requirements have been established. The estimate is based on the standard estimation
formula, with a simplified set of seven multipliers. Estimates are based on function points,
which are then converted to number of lines of source code.

3. A reuse model: This model is used to compute the effort required to integrate reusable
components and/or automatically generated program code. It is normally used in conjunction
with the post-architecture model.

4. A post-architecture model: Once the system architecture has been designed, a more accurate
estimate of the software size can be made. Again, this model uses the standard formula for
cost estimation discussed above. However, it includes a more extensive set of 17 multipliers
reflecting personnel capability, product, and project characteristics

Department of CSE, SAINTGITS College of Engineering

Department of CSE, SAINTGITS College of Engineering

COCOMO Estimation Models

• Of course, in large systems, different parts of the system may be
developed using different technologies, and you may not have to
estimate all parts of the system to the same level of accuracy.

• In such cases, you can use the appropriate submodel for each part of
the system and combine the results to create a composite estimate.

Department of CSE, SAINTGITS College of Engineering

The application composition model

• The application composition model was introduced into COCOMO II to support the estimation of effort required for prototyping
projects and for projects where the software is developed by composing existing components.

• It is based on an estimate of weighted application points (sometimes called object points), divided by a standard estimate of
application point productivity.

• The number of application points in a program is derived from four simpler estimates:
■ the number of separate screens or web pages that are displayed;
■ the number of reports that are produced;
■ the number of modules in imperative programming languages (such as Java); and
■ the number of lines of scripting language or database programming code.
This estimate is then adjusted according to the difficulty of developing each application point.

Productivity depends on the developer’s experience and capability as well as the capabilities of the software tools (ICASE) used to
support development. Figure (next slide) shows the levels of application-point productivity suggested by the COCOMO model
developers.

Department of CSE, SAINTGITS College of Engineering

Application point productivity

The application composition model

• Application composition usually relies on reusing existing software and
configuring application systems.

• Some of the application points in the system will therefore be implemented using
reusable components. Consequently, you have to adjust the estimate to take into
account the percentage of reuse expected.

Therefore, the final formula for effort computation for system prototypes is:

PM: the effort estimate in person-months.

NAP: the total number of application points in the delivered system.

%reuse: an estimate of the amount of reused code in the development.

PROD: the application-point productivity as shown in Figure (previous slide)

Department of CSE, SAINTGITS College of Engineering

The early design model

• This model may be used during the early stages of a project, before a detailed architectural design for the system is available.

• The early design model assumes that user requirements have been agreed and initial stages of the system design process are
underway.

• Your goal at this stage should be to make a quick and approximate cost estimate.

• Therefore, you have to make simplifying assumptions, such as the assumpion that there is no effort involved in integrating
reusable code.

• Early design estimates are most useful for option exploration where you need to compare different ways of implementing the user
requirements.

• The estimates produced at this stage are based on the standard formula for algorithmic models, namely:

• The co-efficient A should be 2.94.

• The size of the system is expressed in KSLOC, which is the number of thousands of lines of source code. KSLOC is calculated by
estimating the number of function points in the software.

• You then use standard tables, which relate software size to function points for different programming languages (QSM 2014) to
compute an initial estimate of the system size in KSLOC.

• The exponent B reflects the increased effort required as the size of the project increases. This can vary from 1.1 to 1.24 depending
on the novelty of the project, the development flexibility, the risk resolution processes used, the cohesion of the development
team, and the process maturity level of the organization.

Department of CSE, SAINTGITS College of Engineering

The early design model

• This results in an effort computation as follows:

• PERS: personnel capability

• PREX: personnel experience

• RCPX: product reliability and complexity

• RUSE: reuse required

• PDIF: platform difficulty

• SCED: schedule

• FSIL: support facilities

• The multiplier M is based on seven project and process attributes that increase or decrease the
estimate. You estimate values for these attributes using a six-point scale, where 1 corresponds to
“very low” and 6 corresponds to “very high”; for example, PERS = 6 means that expert staff are
available to work on the project

Department of CSE, SAINTGITS College of Engineering

The reuse model

• The COCOMO reuse model is used to estimate the effort required to integrate reusable or generated code.

• Most large systems include a significant amount of code that has been reused from previous development projects.

• COCOMO II considers two types of reused code.

Black-box code

• Black-box code is code that can be reused without understanding the code or making changes to it.

• Examples of black-box code are components that are automatically generated from UML models or application libraries such as graphics libraries.

• It is assumed that the development effort for blackbox code is zero.

• Its size is not taken into account in the overall effort computation.

White-box code

• White-box code is reusable code that has to be adapted to integrate it with new code or other reused components.

• Development effort is required for reuse because the code has to be understood and modified before it can work correctly in the system.

• White-box code could be automatically generated code that needs manual changes or additions. Alternatively, it can be reused components from
other systems that have to be modified in the system that is being developed.

• Three factors contribute to the effort involved in reusing white-box code components:
1. The effort involved in assessing whether or not a component could be reused in a system that is being developed.

2. The effort required to understand the code that is being reused.

3. The effort required to modify the reused code to adapt it and integrate it with the system being developed.

Department of CSE, SAINTGITS College of Engineering

The reuse model

• The development effort in the reuse model is calculated using the COCOMO early design model
and is based on the total number of lines of code in the system.

• The code size includes new code developed for components that are not reused plus an
additional factor that allows for the effort involved in reusing and integrating existing code.

• This additional factor is called ESLOC, the equivalent number of lines of new source code.

• That is, you express the reuse effort as the effort that would be involved in developing some
additional source code.

• The formula used to calculate the source code equivalence is:

Department of CSE, SAINTGITS College of Engineering

The reuse model

• In some cases, the adjustments required to reuse code are syntactic and can be implemented by an automated tool.

• These do not involve significant effort, so you should estimate what fraction of the changes made to reused code can be
automated (AT).

• This reduces the total number of lines of code that have to be adapted.

• The Adaptation Adjustment Multiplier (AAM) adjusts the estimate to reflect the additional effort required to reuse code. The
COCOMO model documentation discusses in detail how AAM should be calculated.

• Simplistically, AAM is the sum of three components:

1. An assessment factor (referred to as AA) that represents the effort involved in deciding whether or not to reuse components. AA
varies from 0 to 8 depending on the amount of time you need to spend looking for and assessing potential candidates for reuse.

2. An understanding component (referred to as SU) that represents the costs of understanding the code to be reused and the
familiarity of the engineer with the code that is being reused. SU ranges from 50 for complex, unstructured code to 10 for well-
written, object-oriented code.

3. An adaptation component (referred to as AAF) that represents the costs of making changes to the reused code. These include
design, code, and integration changes.

Once you have calculated a value for ESLOC, you apply the standard estimation formula to calculate the total effort required, where
the Size parameter = ESLOC. Therefore, the formula to estimate the reuse effort is:

Department of CSE, SAINTGITS College of Engineering

The post-architecture level

• The post-architecture model is the most detailed of the COCOMO II models.

• It is used when you have an initial architectural design for the system.

• The starting point for estimates produced at the post-architecture level is the same basic formula used in the early design estimates:

• By this stage in the process, you should be able to make a more accurate estimate of the project size, as you know how the system will be
decomposed into subsystems and components.

• You make this estimate of the overall code size by adding three code size estimates:

1. An estimate of the total number of lines of new code to be developed (SLOC).

2. An estimate of the reuse costs based on an equivalent number of source lines of code (ESLOC), calculated using the reuse model.

3. An estimate of the number of lines of code that may be changed because of changes to the system requirements.

 The final component in the estimate—the number of lines of modified code— reflects the fact that software requirements always change. This leads
to rework and development of extra code, which you have to take into account.

 Of course there will often be even more uncertainty in this figure than in the estimates of new code to be developed. The exponent term (B) in the
effort computation formula is related to the levels of project complexity. As projects become more complex, the effects of increasing system size
become more significant. The value of the exponent B is based on five factors, as shown in Figure 40(next slide).

 These factors are rated on a sixpoint scale from 0 to 5, where 0 means “extra high” and 5 means “very low.” To calculate B, you add the ratings, divide
them by 100, and add the result to 1.01 to get the exponent that should be used

Department of CSE, SAINTGITS College of Engineering

The post-architecture level

Department of CSE, SAINTGITS College of Engineering

The post-architecture level

• Example:

• Imagine that an organization is taking on a project in a domain in which it has little previous experience. The project client has not
defined the process to be used or allowed time in the project schedule for significant risk analysis. A new development team must
be put together to implement this system. The organization has recently put in place a process improvement program and has
been rated as a Level 2 organization according to the SEI capability assessment. These characteristics lead to estimates of the
ratings used in exponent calculation as follows:

1. Precedentedness, rated low (4). This is a new project for the organization.

2. Development flexibility, rated very high (1). There is no client involvement in the development process, so there are few
externally imposed changes.

3. Architecture/risk resolution, rated very low (5). There has been no risk analysis carried out.

4. Team cohesion, rated nominal (3). This is a new team, so there is no information available on cohesion.

5. Process maturity, rated nominal (3). Some process control is in place.

The sum of these values is 16. You then calculate the final value of the exponent by dividing this sum by 100 and adding 0.01 to the
result. The adjusted value of B is therefore 1.17. The overall effort estimate is refined using an extensive set of 17 product, process,
and organizational attributes (see breakout box) rather than the seven attributes used in the early design model. You can estimate
values for these attributes because you have more information about the software itself, its non-functional requirements, the
development team, and the development process.

Department of CSE, SAINTGITS College of Engineering

The post-architecture level

• Figure shows how the cost driver attributes influence effort estimates.

• Assume that the exponent value is 1.17 as discussed in the above example.

• Reliability (RELY), complexity (CPLX), storage (STOR), tools (TOOL), and
schedule (SCED) are the key cost drivers in the project.

• All of the other cost drivers have a nominal value of 1, so they do not affect
the effort computation.

• In the figure 23.13, maximum and minimum values have assigned to the key
cost drivers to show how they influence the effort estimate. The values used
are those from the COCOMO II reference manual .

• You can see that high values for the cost drivers lead an effort estimate that is
more than three times the initial estimate, whereas low values reduce the
estimate to about one third of the original.

• This highlights the significant differences between different types of project
and the difficulties of transferring experience from one application domain to
another.

Department of CSE, SAINTGITS College of Engineering

Project duration and staffing

• Project managers must estimate how long the software will take to develop
and when staff will be needed to work on the project.

• Increasingly, organizations are demanding shorter development schedules
so that their products can be brought to market before their competitor’s.

• The COCOMO model includes a formula to estimate the calendar time
required to complete a project.

Department of CSE, SAINTGITS College of Engineering

Project duration and staffing

• The nominal project schedule predicted by the COCOMO model does not necessarily
correspond with the schedule required by the software customer.

• You may have to deliver the software earlier or (more rarely) later than the date
suggested by the nominal schedule.

• If the schedule is to be compressed (i.e., software is to be developed more quickly), this
increases the effort required for the project.

• This is taken into account by the SCED multiplier in the effort estimation computation.

• Assume that a project estimated TDEV as 13 months, as suggested above, but the actual
schedule required was 10 months. This represents a schedule compression of
approximately 25%. Using the values for the SCED multiplier, we see that the effort
multiplier for this level of schedule compression is 1.43. Therefore, the actual effort that
will be required if this accelerated schedule is to be met is almost 50% more than the
effort required to deliver the software according to the nominal schedule.

Department of CSE, SAINTGITS College of Engineering

Project duration and staffing

• There is a complex relationship between the number of people working on a project, the effort that will be devoted to the project and the project
delivery schedule.

• If four people can complete a project in 13 months (i.e., 52 person-months of effort), then you might think that by adding one more person, you
could complete the work in 11 months (55 person-months of effort).

• However, the COCOMO model suggests that you will, in fact, need six people to finish the work in 11 months (66 person-months of effort).

• The reason for this is that adding people to a project reduces the productivity of existing team members.

• As the project team increases in size, team members spend more time communicating and defining interfaces between the parts of the system
developed by other people.

• Doubling the number of staff (for example) therefore does not mean that the duration of the project will be halved.

• Consequently, when you add an extra person, the actual increment of effort added is less than one person as others become less productive. I

• f the development team is large, adding more people to a project sometimes increases rather than reduces the development schedule because of the
overall effect on productivity.

• You cannot simply estimate the number of people required for a project team by dividing the total effort by the required project schedule.

• Usually, a small number of people are needed at the start of a project to carry out the initial design. The team then builds up to a peak during the
development and testing of the system, and then declines in size as the system is prepared for deployment.

• As a project manager, you should therefore avoid adding too many staff to a project early in its lifetime.

Department of CSE, SAINTGITS College of Engineering

MODULE 4.3
Software Project Management - Risk management, Managing people,
Teamwork. Project Planning, Software pricing, Plan-driven development,
Project scheduling, Agile planning. Estimation techniques, COCOMO cost
modeling. Configuration management, Version management, System
building, Change management, Release management, Agile software
management - SCRUM framework. Kanban methodology and lean approaches.

Department of CSE, SAINTGITS College of Engineering

Configuration management

• Configuration management (CM) is concerned with the policies, processes, and tools for managing changing
software systems.

• You need to manage evolving systems because it is easy to lose track of what changes and component
versions have been incorporated into each system version.

• Versions implement proposals for change, corrections of faults, and adaptations for different hardware and
operating systems.

• Several versions may be under development and in use at the same time.

• If you don’t have effective configuration management procedures in place, you may waste effort modifying
the wrong version of a system, delivering the wrong version of a system to customers, or forgetting where
the software source code for a particular version of the system or component is stored.

• Configuration management is useful for individual projects as it is easy for one person to forget what
changes have been made.

• It is essential for team projects where several developers are working at the same time on a software
system.

• The configuration management system provides team members with access to the system being developed
and manages the changes that they make to the code

Department of CSE, SAINTGITS College of Engineering

Configuration management

• The configuration management of a software system product involves four
closely related activities (Figure 1):

1. Version control: This involves keeping track of the multiple versions of system
components and ensuring that changes made to components by different
developers do not interfere with each other.

2. System building: This is the process of assembling program components, data,
and libraries, then compiling and linking these to create an executable system.

3. Change management: This involves keeping track of requests for changes to
delivered software from customers and developers, working out the costs and
impact of making these changes, and deciding if and when the changes should
be implemented.

4. Release management: This involves preparing software for external release and
keeping track of the system versions that have been released for customer use.

Department of CSE, SAINTGITS College of Engineering

Configuration management

Figure 1: Configuration
management activities

Department of CSE, SAINTGITS College of Engineering

Configuration management

• Because of the large volume of information to be managed and the relationships between
configuration items, tool support is essential for configuration management.

• Configuration management tools are used to store versions of system components, build systems
from these components, track the releases of system versions to customers, and keep track of
change proposals.

• CM tools range from simple tools that support a single configuration management task, such as
bug tracking, to integrated environments that support all configuration management activities.

• Agile development, where components and systems are changed several times a day, is
impossible without using CM tools.

• The definitive versions of components are held in a shared project repository, and developers
copy them into their own workspace.

• They make changes to the code and then use system-building tools to create a new system on
their own computer for testing.

• Once they are happy with the changes made, they return the modified components to the
project repository. This makes the modified components available to other team members.

Department of CSE, SAINTGITS College of Engineering

Configuration management

• The development of a software product or custom software system takes place in three
distinct phases:

1. A development phase where the development team is responsible for managing the
software configuration and new functionality is being added to the software. The
development team decides on the changes to be made to the system.

2. A system testing phase where a version of the system is released internally for
testing. This may be the responsibility of a quality management team or an individual
or group within the development team. At this stage, no new functionality is added to
the system. The changes made at this stage are bug fixes, performance improvements,
and security vulnerability repairs. There may be some customer involvement as beta
testers during this phase.

3. A release phase where the software is released to customers for use. After the release
has been distributed, customers may submit bug reports and change requests. New
versions of the released system may be developed to repair bugs and vulnerabilities
and to include new features suggested by customers.

Department of CSE, SAINTGITS College of Engineering

Configuration management

• For large systems, there is never just one “working” version
of a system; there are always several versions of the system
at different stages of development.

• Several teams may be involved in the development of
different system versions. Figure 2 shows situations where
three versions of a system are being developed:

1. Version 1.5 of the system has been developed to repair
bug fixes and improve the performance of the first
release of the system. It is the basis of the second system
release (R1.1).

2. Version 2.4 is being tested with a view to it becoming
release 2.0 of the system. No new features are being
added at this stage.

3. Version 3 is a development system where new features
are being added in response to change requests from
customers and the development team. This will
eventually be released as release 3.0.

These different versions have many common components as
well as components or component versions that are unique to
that system version. The CM system keeps track of the
components that are part of each version and includes them as
required in the system build

Department of CSE, SAINTGITS College of Engineering

Configuration management

• In large software projects, configuration management is sometimes part of software quality management.

• The quality manager is responsible for both quality management and configuration management.

• When a pre-release version of the software is ready, the development team hands it over to the quality
management team.

• The QM team checks that the system quality is acceptable. If so, it then becomes a controlled system, which
means that all changes to the system have to be agreed on and recorded before they are implemented.

• Many specialized terms are used in configuration management. Unfortunately, these are not standardized.

• Military software systems were the first systems in which software CM was used, so the terminology for
these systems reflected the processes and terminology used in hardware configuration management.

• Commercial systems developers did not know about military procedures or terminology and so often
invented their own terms.

• Agile methods have also devised new terminology in order to distinguish the agile approach from traditional
CM methods

Department of CSE, SAINTGITS College of Engineering

Configuration management

• The definition and use of configuration management standards are
essential for quality certification in both ISO 9000 and the SEI’s capability
maturity model.

• CM standards in a company may be based on generic standards such as
IEEE 828-2012, an IEEE standard for configuration management.

• These standards focus on CM processes and the documents produced
during the CM process (IEEE 2012).

• Using the external standards as a starting point, companies may then
develop more detailed, company-specific standards that are tailored to
their specific needs.

• However, agile methods rarely use these standards because of the
documentation overhead involved.

Department of CSE, SAINTGITS College of Engineering

CM Terminology

Department of CSE, SAINTGITS College of Engineering

Version Management

Department of CSE, SAINTGITS College of Engineering

Version management

• Version management is the process of keeping track of different
versions of software components and the systems in which these
components are used.

• It also involves ensuring that changes made by different developers to
these versions do not interfere with each other.

• In other words, version management is the process of managing
codelines and baselines.

Department of CSE, SAINTGITS College of Engineering

Version management

• A codeline is a sequence of versions of source code, with later
versions in the sequence derived from earlier versions.

• Codelines normally apply to components of systems so that there are
different versions of each component.

• A baseline is a definition of a specific system.

• The baseline specifies the component versions that are included in
the system and identifies the libraries used, configuration files, and
other system information.

Department of CSE, SAINTGITS College of Engineering

Version management

• In the figure different baselines use different versions of the
components from each codeline.

• In the diagram, boxes representing components are shaded in the
baseline definition to indicate that these are actually references to
components in a codeline.

• The mainline is a sequence of system versions developed from an
original baseline

Department of CSE, SAINTGITS College of Engineering

Version management

• Baselines may be specified using a configuration language in which
you define what components should be included in a specific version
of a system.

• It is possible to explicitly specify an individual component version
(X.1.2, say) or simply to specify the component identifier (X).

• If you simply include the component identifier in the configuration
description, the most recent version of the component should be
used.

• Baselines are important because you often have to re-create an
individual version of a system.

Department of CSE, SAINTGITS College of Engineering

Version management

• Version control (VC) systems identify, store, and control access to the
different versions of components.

• There are two types of modern version control system:

1. Centralized systems, where a single master repository maintains all
versions of the software components that are being developed.
Subversion is a widely used example of a centralized VC system.

2. Distributed systems, where multiple versions of the component
repository exist at the same time. Git, is a widely used example of a
distributed VC system.

Department of CSE, SAINTGITS College of Engineering

Version management

• Centralized and distributed VC systems provide comparable functionality but implement this functionality in different ways. Key
features of these systems include:

1. Version and release identification: Managed versions of a component are assigned unique identifiers when they are submitted
to the system. These identifiers allow different versions of the same component to be managed, without changing the
component name. Versions may also be assigned attributes, with the set of attributes used to uniquely identify each version.

2. Change history recording: The VC system keeps records of the changes that have been made to create a new version of a
component from an earlier version.

3. Independent development: Different developers may be working on the same component at the same time. The version
control system keeps track of components that have been checked out for editing and ensures that changes made to a
component by different developers do not interfere.

4. Project support: A version control system may support the development of several projects, which share components. It is
usually possible to check in and check out all of the files associated with a project rather than having to work with one file or
directory at a time.

5. Storage management: Rather than maintain separate copies of all versions of a component, the version control system may use
efficient mechanisms to ensure that duplicate copies of identical files are not maintained. Where there are only small
differences between files, the VC system may store these differences rather than maintain multiple copies of files. A specific
version may be automatically re-created by applying the differences to a master version

Department of CSE, SAINTGITS College of Engineering

Version management
• Most software development is a team activity, so several team members often work on the same

component at the same time.

• It’s important to avoid situations where changes interfere with each other.

• The project repository maintains the “master” version of all components, which is used to create baselines
for system building. When modifying components, developers copy (check-out) these from the repository
into their workspace and work on these copies.

• When they have completed their changes, the changed components are returned (checked-in) to the
repository.

• However, centralized and distributed VC systems support independent development of shared
components in different ways.

• In centralized systems (FIGURE 3), developers check out components or directories of components from
the project repository into their private workspace and work on these copies in their private workspace.

• When their changes are complete, they check-in the components back to the repository. This creates a
new component version that may then be shared.

• If two or more people are working on a component at the same time, each must check out the component
from the repository.

• If a component has been checked out, the version control system warns other users wanting to check out
that component that it has been checked out by someone else.

• The system will also ensure that when the modified components are checked in, the different versions are
assigned different version identifiers and are stored separately.

Department of CSE, SAINTGITS College of Engineering

Version management

Fig 3: Check-in and check-out from a centralized
version repository

Department of CSE, SAINTGITS College of Engineering

Version management

• In a distributed VC system, such as Git, a different approach is used.

• A “master” repository is created on a server that maintains the code produced by the
development team.

• Instead of simply checking out the files that they need, a developer creates a clone of the
project repository that is downloaded and installed on his or her computer.

• Developers work on the files required and maintain the new versions on their private
repository on their own computer.

• When they have finished making changes, they “commit” these changes and update
their private server repository.

• They may then “push” these changes to the project repository or tell the integration
manager that changed versions are available.

• He or she may then “pull” these files to the project repository (see Figure 4). In this
example, both Bob and Alice have cloned the project repository and have updated files.

• They have not yet pushed these back to the project repository.

Department of CSE, SAINTGITS College of Engineering

Version management

• This model of development has a number of
advantages:

1. It provides a backup mechanism for the
repository. If the repository is corrupted,
work can continue and the project
repository can be restored from local
copies.

2. It allows for offline working so that
developers can commit changes if they do
not have a network connection.

3. Project support is the default way of
working. Developers can compile and test
the entire system on their local machines
and test the changes they have made. Figure 4: Repository cloning

Department of CSE, SAINTGITS College of Engineering

Version management

• Distributed version control is essential for open-
source development where several people may
be working simultaneously on the same system
without any central coordination.

• There is no way for the open-source system
“manager” to know when changes will be made.

• In this case, as well as a private repository on
their own computer, developers also maintain a
public server repository to which they push new
versions of components that they have changed.

• It is then up to the open-source system
“manager” to decide when to pull these changes
into the definitive system.

• This organization is shown in figure 5.

Figure 5

Department of CSE, SAINTGITS College of Engineering

Version management

• A consequence of the independent development of the same component is that codelines may branch.

• Rather than a linear sequence of versions that reflect changes to the component over time, there may be
several independent sequences, as shown in Figure 6.

• This is normal in system development, where different developers work independently on different versions
of the source code and change it in different ways.

• It is generally recommended when working on a system that a new branch should be created so that
changes do not accidentally break a working system.

• At some stage, it may be necessary to merge codeline branches to create a new version of a component that
includes all changes that have been made.

• This is also shown in Figure 6, where component versions 2.1.2 and 2.3 are merged to create version 2.4.

• If the changes made involve completely different parts of the code, the component versions may be merged
automatically by the version control system by combining the code changes.

• This is the normal mode of operation when new features have been added.

• These code changes are merged into the master copy of the system. However, the changes made by
different developers sometimes overlap.

• The changes may be incompatible and interfere with each other. In this case, a developer has to check for
clashes and make changes to the components to resolve the incompatibilities between the different
versions.

Department of CSE, SAINTGITS College of Engineering

Version management

Figure 6: Branching and Merging

Department of CSE, SAINTGITS College of Engineering

Version management

• When version control systems were first developed, storage management was one of their most important functions. Disk space
was expensive, and it was important to minimize the disk space used by the different copies of components.

• Instead of keeping a complete copy of each version, the system stores a list of differences (deltas) between one version and
another.

• By applying these to a master version (usually the most recent version), a target version can be re-created. This is illustrated in
Figure 7.

• When a new version is created, the system simply stores a delta, a list of differences, between the new version and the older
version used to create that new version.

• In Figure 7, the shaded boxes represent earlier versions of a component that are automatically re-created from the most recent
component version.

• Deltas are usually stored as lists of changed lines, and, by applying these automatically, one version of a component can be created
from another.

• As the most recent version of a component will most likely be the one used, most systems store that version in full. The deltas
then define how to re-create earlier system versions.

• One of the problems with a delta-based approach to storage management is that it can take a long time to apply all of the deltas.

• As disk storage is now relatively cheap, Git uses an alternative, faster approach. Git does not use deltas but applies a standard
compression algorithm to stored files and their associated meta-information. It does not store duplicate copies of files.

• Retrieving a file simply involves decompressing it, with no need to apply a chain of operations.

• Git also uses the notion of packfiles where several smaller files are combined into an indexed single file. This reduces the overhead
associated with lots of small files. Deltas are used within packfiles to further reduce their size

Department of CSE, SAINTGITS College of Engineering

Storage management using deltas

Department of CSE, SAINTGITS College of Engineering

System building

• System building is the process of creating a complete,
executable system by compiling and linking the system
components, external libraries, configuration files, and
other information.

• System-building tools and version control tools must be
integrated as the build process takes component versions
from the repository managed by the version control
system.

• System building involves assembling a large amount of
information about the software and its operating
environment.

• Therefore, it always makes sense to use an automated
build tool to create a system build (Figure 8).

• source code files that are involved in the build are not
enough. You may have to link these with externally
provided libraries, data files (such as a file of error
messages), and configuration files that define the target
installation.

• You may have to specify the versions of the compiler and
other software tools that are to be used in the build.
Ideally, you should be able to build a complete system with
a single command or mouse click.

Figure 8: System building

Department of CSE, SAINTGITS College of Engineering

System building

• Tools for system integration and building include some or all of the following features:

1. Build script generation: The build system should analyze the program that is being built, identify
dependent components, and automatically generate a build script (configuration file). The system should
also support the manual creation and editing of build scripts.

2. Version control system integration: The build system should check out the required versions of
components from the version control system.

3. Minimal recompilation: The build system should work out what source code needs to be recompiled and
set up compilations if required.

4. Executable system creation: The build system should link the compiled object code files with each other
and with other required files, such as libraries and configuration files, to create an executable system.

5. Test automation: Some build systems can automatically run automated tests using test automation tools
such as JUnit. These check that the build has not been “broken” by changes.

6. Reporting: The build system should provide reports about the success or failure of the build and the tests
that have been run.

7. Documentation generation: The build system may be able to generate release notes about the build and
system help pages.

Department of CSE, SAINTGITS College of Engineering

System building

• The build script is a definition of the system to be built.

• It includes information about components and their dependencies,
and the versions of tools used to compile and link the system.

• The configuration language used to define the build script includes
constructs to describe the system components to be included in the
build and their dependencies.

Department of CSE, SAINTGITS College of Engineering

System building

• Building is a complex process, which is potentially error-prone, as three different system
platforms may be involved (Figure 9):

1. The development system, which includes development tools such as compilers and source
code editors. Developers check out code from the version control system into a private
workspace before making changes to the system. They may wish to build a version of a system
for testing in their development environment before committing changes that they have made
to the version control system.

2. The build server, which is used to build definitive, executable versions of the system. This
server maintains the definitive versions of a system. All of the system developers check in code
to the version control system on the build server for system building.

3. The target environment, which is the platform on which the system executes. This may be the
same type of computer that is used for the development and build systems. However, for real-
time and embedded systems, the target environment is often smaller and simpler than the
development environment (e.g., a cell phone). For large systems, the target environment may
include databases and other application systems that cannot be installed on development
machines. In these situations, it is not possible to build and test the system on the
development computer or on the build server

Department of CSE, SAINTGITS College of Engineering

System building

Figure 9: Development, build, and target
platforms

Department of CSE, SAINTGITS College of Engineering

System building

• Agile methods recommend that very frequent system builds should be carried out, with automated testing used to discover
software problems. Frequent builds are part of a process of continuous integration as shown in Figure 10.

• In keeping with the agile methods notion of making many small changes, continuous integration involves rebuilding the mainline
frequently, after small source code changes have been made.

• The steps in continuous integration are:

1. Extract the mainline system from the VC system into the developer’s private workspace.

2. Build the system and run automated tests to ensure that the built system passes all tests. If not, the build is broken, and you
should inform whoever checked in the last baseline system. He or she is responsible for repairing the problem.

3. Make the changes to the system components.

4. Build the system in a private workspace and rerun system tests. If the tests fail, continue editing.

5. Once the system has passed its tests, check it into the build system server but do not commit it as a new system baseline in the
VC system.

6. Build the system on the build server and run the tests. Alternatively, if you are using Git, you can pull recent changes from the
server to your private workspace. You need to do this in case others have modified components since you checked out the
system. If this is the case, check out the components that have failed and edit these so that tests pass on your private
workspace.

7. If the system passes its tests on the build system, then commit the changes you have made as a new baseline in the system
mainline.

Department of CSE, SAINTGITS College of Engineering

System building

• Tools such as Jenkins are used to support continuous integration.

• These tools can be set up to build a system as soon as a developer has completed a
repository update.

• The advantage of continuous integration is that it allows problems caused by the
interactions between different developers to be discovered and repaired as soon as
possible.

• The most recent system in the mainline is the definitive working system.

• However, although continuous integration is a good idea, it is not always possible to
implement this approach to system building:

1. If the system is very large, it may take a long time to build and test, especially if integration with
other application systems is involved. It may be impractical to build the system being developed
several times per day.

2. If the development platform is different from the target platform, it may not be possible to run
system tests in the developer’s private workspace. There may be differences in hardware,
operating system, or installed software. Therefore, more time is required for testing the system.

Department of CSE, SAINTGITS College of Engineering

System building

• For large systems or for systems where the execution platform is not the same as the development platform,
continuous integration is usually impossible. In those circumstances, frequent system building is supported
using a daily build system:

1. The development organization sets a delivery time (say 2 p.m.) for system components. If developers
have new versions of the components that they are writing, they must deliver them by that time.
Components may be incomplete but should provide some basic functionality that can be tested.

2. A new version of the system is built from these components by compiling and linking them to form a
complete system.

3. This system is then delivered to the testing team, which carries out a set of predefined system tests.

4. Faults that are discovered during system testing are documented and returned to the system developers.
They repair these faults in a subsequent version of the component.

The advantages of using frequent builds of software are that the chances of finding problems stemming from
component interactions early in the process are increased. Frequent building encourages thorough unit testing
of components.

Frequent building encourages thorough unit testing of components.

Department of CSE, SAINTGITS College of Engineering

System building

• As compilation is a computationally intensive process, tools to support system building
may be designed to minimize the amount of compilation that is required. They do this by
checking if a compiled version of a component is available. If so, there is no need to
recompile that component.

• Therefore, there has to be a way of unambiguously linking the source code of a
component with its equivalent object code.

• This linking is accomplished by associating a unique signature with each file where a
source code component is stored.

• The corresponding object code, which has been compiled from the source code, has a
related signature.

• The signature identifies each source code version and is changed when the source code
is edited. By comparing the signatures on the source and object code files, it is possible
to decide if the source code component was used to generate the object code
component

Department of CSE, SAINTGITS College of Engineering

System building

• Two types of signature may be used.(figure 10)

1. Modification timestamps:

• The signature on the source code file is the time and date when that file was modified.

• If the source code file of a component has been modified after the related object code file, then the system assumes that recompilation to create a
new object code file is necessary.

• [For example, say components Comp.java and Comp.class have modification signatures of 17:03:05:02:14:2014 and 16:58:43:02:14:2014,
respectively. This means that the Java code was modified at 3 minutes and 5 seconds past 5 on the 14th of February 2014 and the compiled version
was modified at 58 minutes and 43 seconds past 4 on the 14th of February 2014. In this case, the system would automatically recompile Comp.java
because the compiled version has an earlier modification date than the most recent version of the component.]

2. Source code checksums

• The signature on the source code file is a checksum calculated from data in the file.

• A checksum function calculates a unique number using the source text as input.

• If you change the source code (even by one character), this will generate a different checksum. You can therefore be confident that source code files
with different checksums are actually different.

• The checksum is assigned to the source code just before compilation and uniquely identifies the source file.

• The build system then tags the generated object code file with the checksum signature.

• If there is no object code file with the same signature as the source code file to be included in a system, then recompilation of the source code is
necessary

Department of CSE, SAINTGITS College of Engineering

System building

Figure 10: Linking source and object code

Department of CSE, SAINTGITS College of Engineering

System building

• As object code files are not normally versioned, the first approach(modification timestamps) means that
only the most recently compiled object code file is maintained in the system.

• This is normally related to the source code file by name; that is, it has the same name as the source code file
but with a different suffix. Therefore, the source file Comp.Java may generate the object file Comp.class.

• Because source and object files are linked by name, it is not usually possible to build different versions of a
source code component into the same directory at the same time.

• The compiler would generate object files with the same name, so only the most recently compiled version
would be available.

• The checksum approach has the advantage of allowing many different versions of the object code of a
component to be maintained at the same time.

• The signature rather than the filename is the link between source and object code. The source code and
object code files have the same signature. Therefore, when you recompile a component, it does not
overwrite the object code, as would normally be the case when the timestamp is used.

• Rather, it generates a new object code file and tags it with the source code signature. Parallel compilation is
possible, and different versions of a component may be compiled at the same time.

Department of CSE, SAINTGITS College of Engineering

Change management

• Change is a fact of life for large software systems. Organizational needs and
requirements change during the lifetime of a system, bugs have to be repaired,
and systems have to adapt to changes in their environment.

• To ensure that the changes are applied to the system in a controlled way, you
need a set of tool-supported, change management processes.

• Change management is intended to ensure that the evolution of the system is
controlled and that the most urgent and cost-effective changes are prioritized.

• Change management is the process of analyzing the costs and benefits of
proposed changes, approving those changes that are cost-effective, and
tracking which components in the system have been changed.

• Figure 11 is a model of a change management process that shows the main
change management activities. This process should come into effect when the
software is handed over for release to customers or for deployment within an
organization

Department of CSE, SAINTGITS College of Engineering

Figure 11: The change management
process

Department of CSE, SAINTGITS College of Engineering

Change management

• [Many variants of this process are in use depending on whether the software is a custom
system, a product line, or an off-the-shelf product. The size of the company also makes a
difference—small companies use a less formal process than large companies that are
working with corporate or government customers.]

• All change management processes should include some way of checking, costing, and
approving changes.

• Tools to support change management may be relatively simple issue or bug tracking
systems or software that is integrated with a configuration management package for
large-scale systems, such as Rational Clearcase.

• Issue tracking systems allow anyone to report a bug or make a suggestion for a system
change, and they keep track of how the development team has responded to the issues.

• More complex systems are built around a process model of the change management
process. They automate the entire process of handling change requests from the initial
customer proposal to final change approval and change submission to the development
team.

Department of CSE, SAINTGITS College of Engineering

Change management
• The change management process is initiated when a system stakeholder completes

and submits a change request describing the change required to the system.

• This could be a bug report, where the symptoms of the bug are described, or a request
for additional functionality to be added to the system.

• Change requests may be submitted using a change request form (CRF).

• Stakeholders may be system owners and users, beta testers, developers, or the
marketing department of a company.

• Electronic change request forms record information that is shared between all groups
involved in change management.

• As the change request is processed, information is added to the CRF to record decisions
made at each stage of the process.

• At any time, it therefore represents a snapshot of the state of the change request.

• In addition to recording the change required, the CRF records the recommendations
regarding the change, the estimated costs of the change, and the dates when the change
was requested, approved, implemented, and validated.

• The CRF may also include a section where a developer outlines how the change may be
implemented. Again, the degree of formality in the CRF varies depending on the size and
type of organization that is developing the system.Department of CSE, SAINTGITS College of Engineering

Change management

Department of CSE, SAINTGITS College of Engineering

Change management

• System developers decide how to implement the change and estimate the time required to complete the
change implementation.

• After a change request has been submitted, it is checked to ensure that it is valid.

• The checker may be from a customer or application support team or, for internal requests, may be a
member of the development team. The change request may be rejected at this stage.

• If the change request is a bug report, the bug may have already been reported and repaired.

• Sometimes, what people believe to be problems are actually misunderstandings of what the system is
expected to do.

• On occasions, people request features that have already been implemented but that they don’t know
about.

• If any of these features are true(ie. the change is not valid), the issue is closed and the form is updated
with the reason for closure.

• If it is a valid change request, it is then logged as an outstanding request for subsequent analysis.

• For valid change requests, the next stage of the process is change assessment and costing.

• This function is usually the responsibility of the development or maintenance team as they can work out
what is involved in implementing the change.

Department of CSE, SAINTGITS College of Engineering

Change management

• The impact of the change on the rest of the system must be checked. To do this, you have to identify all of the components
affected by the change.

• If making the change means that further changes elsewhere in the system are needed, this will obviously increase the cost of
change implementation.

• Next, the required changes to the system modules are assessed.

• Finally, the cost of making the change is estimated, taking into account the costs of changing related components

• Following this analysis, a separate group decides if it is cost-effective for the business to make the change to the software.

• For military and government systems, this group is often called the change control board (CCB).

• In industry, it may be called something like a “product development group” responsible for making decisions about how a
software system should evolve.

• This group should review and approve all change requests, unless the changes simply involve correcting minor errors on screen
displays, web pages, or documents.

• These small requests should be passed to the development team for immediate implementation. The CCB or product development
group considers the impact of the change from a strategic and organizational rather than a technical point of view.

• It decides whether the change in question is economically justified, and it prioritizes accepted changes for implementation.

• Accepted changes are passed back to the development group; rejected change requests are closed and no further action is
taken.

Department of CSE, SAINTGITS College of Engineering

Change management

• The factors that influence the decision on whether or not to implement a change include:

1. The consequences of not making the change: When assessing a change request, you have to consider
what will happen if the change is not implemented.[If the change is associated with a reported system
failure, the seriousness of that failure has to be taken into account. If the system failure causes the system
to crash, this is very serious, and failure to make the change may disrupt the operational use of the
system. On the other hand, if the failure has a minor effect, such as incorrect colors on a display, then it is
not important to fix the problem quickly. The change should therefore have a low priority.]

2. The benefits of the change: Will the change benefit many users of the system, or will it only benefit the
change proposer?

3. The number of users affected by the change: If only a few users are affected, then the change may be
assigned a low priority. In fact, making the change may be inadvisable if it means that the majority of
system users have to adapt to it.

4. The costs of making the change If making the change affects many system components (hence increasing
the chances of introducing new bugs) and/or takes a lot of time to implement, then the change may be
rejected.

5. The product release cycle If a new version of the software has just been released to customers, it may
make sense to delay implementation of the change until the next planned release

Department of CSE, SAINTGITS College of Engineering

Change management

• Change management for software products (e.g., a CAD system product), rather than custom systems
specifically developed for a certain customer, are handled in a different way.

• In software products, the customer is not directly involved in decisions about system evolution, so the
relevance of the change to the customer’s business is not an issue.

• Change requests for these products come from the customer support team, the company marketing team,
and the developers themselves. These requests may reflect suggestions and feedback from customers or
analyses of what is offered by competing products.

• The customer support team may submit change requests associated with bugs that have been discovered
and reported by customers after the software has been released.

• Customers may use a web page or email to report bugs. A bug management team then checks that the bug
reports are valid and translates them into formal system change requests.

• Marketing staff may meet with customers and investigate competitive products.

• They may suggest changes that should be included to make it easier to sell a new version of a system to new
and existing customers.

• The system developers themselves may have some good ideas about new features that can be added to the
system.

Department of CSE, SAINTGITS College of Engineering

Change management

• During development, when new versions of the system are created through daily (or more frequent) system builds, there is no need for a formal
change management process.

• Problems and requested changes are recorded in an issue tracking system and discussed in daily meetings.

• Changes that only affect individual components are passed directly to the system developer, who either accepts them or makes a case for why they
are not required.

• However, an independent authority, such as the system architect, should assess and prioritize changes that cut across system modules that have been
produced by different development teams.

• In some agile methods, customers are directly involved in deciding whether a change should be implemented. When they propose a change to the
system requirements, they work with the team to assess the impact of that change and then decide whether the change should take priority over the
features planned for the next increment of the system.

• However, changes that involve software improvement are left to the discretion of the programmers working on the system.

• Refactoring, where the software is continually improved, is not seen as an overhead but as a necessary part of the development process.

• As the development team changes software components, they should maintain a record of the changes made to each component. This is
sometimes called the derivation history of a component.

• A good way to keep the derivation history is in a standardized comment at the beginning of the component source code (Figure 12). This comment
should reference the change request that triggered the software change. These comments can be processed by scripts that scan all components for
the derivation histories and then generate component change reports.

• For documents, records of changes incorporated in each version are usually maintained in a separate page at the front of the document.

Department of CSE, SAINTGITS College of Engineering

Change management

Figure 12: Derivation History

Department of CSE, SAINTGITS College of Engineering

Release management

• A system release is a version of a software system that is distributed to customers.

• For mass-market software, it is usually possible to identify two types of release: major
releases, which deliver significant new functionality, and minor releases, which repair
bugs and fix customer problems that have been reported.

• A software product release is not just the executable code of the system.

• The release may also include:

■ configuration files defining how the release should be configured for particular
installations;

■ data files, such as files of error messages in different languages, that are needed for
successful system operation;

■ an installation program that is used to help install the system on target hardware;

■ electronic and paper documentation describing the system;

■ packaging and associated publicity that have been designed for that release

Department of CSE, SAINTGITS College of Engineering

Release management

• Preparing and distributing a system release for mass-market products is
an expensive process.

• In addition to the technical work involved in creating a release distribution,
advertising and publicity material have to be prepared.

• Marketing strategies may have to be designed to convince customers to
buy the new release of the system.

• Careful thought must be given to release timing.

• If releases are too frequent or require hardware upgrades, customers may
not move to the new release, especially if they have to pay for it.

• If system releases are infrequent, market share may be lost as customers
move to alternative systems.

Department of CSE, SAINTGITS College of Engineering

Release management

• The various technical and organizational factors that you should take
into account when deciding on when to release a new version of a
software product are shown in Figure 13.

Figure 13: Factors influencing system release
planning

Department of CSE, SAINTGITS College of Engineering

Release management

• Release creation is the process of creating the collection of files and documentation
that include all components of the system release.

• This process involves several steps:

1. The executable code of the programs and all associated data files must be identified in
the version control system and tagged with the release identifier.

2. Configuration descriptions may have to be written for different hardware and
operating systems.

3. Updated instructions may have to be written for customers who need to configure
their own systems.

4. Scripts for the installation program may have to be written.

5. Web pages have to be created describing the release, with links to system
documentation.

6. Finally, when all information is available, an executable master image of the software
must be prepared and handed over for distribution to customers or sales outlets.

Department of CSE, SAINTGITS College of Engineering

Release management

• For custom software or software product lines, the complexity of the system release
management process depends on the number of system customers.

• Special releases of the system may have to be produced for each customer.

• Individual customers may be running several different releases of the system at the same
time on different hardware.

• Where the software is part of a complex system of systems, different variants of the
individual systems may have to be created.

• A software company may have to manage tens or even hundreds of different releases of
their software.

• Their configuration management systems and processes have to be designed to provide
information about which customers have which releases of the system and the
relationship between releases and system versions.

• In the event of a problem with a delivered system, you have to be able to recover all of
the component versions used in that specific system

Department of CSE, SAINTGITS College of Engineering

Release management

• When a system release is produced, it must be documented to ensure that it can
be re-created exactly in the future.

• This is particularly important for customized, long-lifetime embedded systems,
such as military systems and those that control complex machines. These systems
may have a long lifetime—30 years in some cases.

• Customers may use a single release of these systems for many years and may
require specific changes to that release long after it has been superseded.

• To document a release, you have to record the specific versions of the source
code components that were used to create the executable code.

• You must keep copies of the source code files, corresponding executables, and all
data and configuration files.

• It may be necessary to keep copies of older operating systems and other support
software because they may still be in operational use.

Department of CSE, SAINTGITS College of Engineering

Release management

• You should also record the versions of the operating system, libraries,
compilers, and other tools used to build the software.

• These tools may be required in order to build exactly the same system
at some later date.

• Accordingly, you may have to store copies of the platform software
and the tools used to create the system in the version control system,
along with the source code of the target system.

Department of CSE, SAINTGITS College of Engineering

Release management

• When planning the installation of new system releases, you cannot assume that
customers will always install new system releases. Some system users may be happy an
existing system and may not consider it worthwhile to absorb the cost of changing to a
new release.

• New releases of the system cannot, therefore, rely on the installation of previous
releases.

• One benefit of delivering software as a service (SaaS) is that it avoids all of these
problems.

• It simplifies both release management and system installation for customers.

• The software developer is responsible for replacing the existing release of a system with
a new release, which is made available to all customers at the same time.

• However, this approach requires that all servers running the services be updated at the
same time. To support server updates, specialized distribution management tools such as
Puppet have been developed for “pushing” new software to servers.

Department of CSE, SAINTGITS College of Engineering

Kanban Methodology

and Lean Approaches
Module 4

KANBAN

 KAN is a word for “card” in Japanese.

 BAN is a word for “signal”.

 KANBAN means signal card.

 Each card contains a small amount of work, say a story to develop and some
clarifying testable examples.

 The kanban method consists of principles, practices, kanban boards and
kanban cards.

 What Is Kanban?

 Kanban is a project management methodology that gives project managers
full transparency into the task management process..

 The kanban method was originally created as a lean manufacturing tool to
maximize production efficiency.

Kanban Principles

 Start with what you’re doing now. Don’t make changes to your process

immediately, but use kanban for your current workflow.

 Changes occur organically over time and shouldn’t be rushed.

 Evolutionary change is incremental, not radical, so as not to give teams

cause for alarm or resistance.

 Respect current roles and responsibilities, and allow teams to

collaboratively identify and implement any changes.

 Encourage leadership from everyone to help keep the mandate of

continuous change for maximizing improvements.

KANBAN vs SCRUM

 Kanban is a project management method that helps visualize tasks, while

Scrum is a method that provides structure to the team and schedule.

 Kanban and Scrum are project management methodologies that

complete project tasks in small increments and emphasize continuous

improvement. But the processes they use to achieve those ends are

different.

 While Kanban is centered around visualizing tasks and continuous flow, Scrum is

more about implementing timelines for each delivery cycle and assigning set

roles.

KANBAN
KANBAN BOARD

 The heart of the Kanban method is the Kanban board—physical or digital—in which phases of the
project are divided into columns.

 The kanban board represents the overall project and is usually broken up into three columns: to
do, in progress and done.

KANBAN CARD

 Each kanban card is filled with information related to that task, such as its name and a short
description.

 Task will be assigned to the team member, who is responsible for executing the task by the
deadline.

KANBAN COLUMNS

 Columns reside on the board are a way to break up the different stages in the project workflow.

 Tasks progress from one column to the next, until the task is completed, so its an indicator of
current status of a task .

KANBAN SWIMLANES

 The key component that will enable you to visualize the whole process on a single board and
distinguish the different parts that actually run simultaneously.

 Horizontal lanes help to separate different work items, activities, teams, services, etc.

Kanban Board/ Card/Columns

Example of KANBAN swimlanes

When KANBAN is used in software development, it uses the stages in the

software development lifecycle (SDLC) to represent the different stages in

the manufacturing process.

Benefits

 Kanban increases transparency in a project by visually clarifying what tasks

need to be completed and where tasks are piling up. This visual aid makes

it easier to delegate resources where they need to go, reducing

inefficiencies.

 Keeps tasks organized

 Create customized workflows

 Share boards for collaboration

 Track production of tasks in real-time

 Kanban uses principles from both Agile and Lean.

Key concepts in KANBAN

 Definition of Workflow (DoW): The DoW defines key parts of the Kanban workflow,

such as what units are moving through the board, what “started” or “finished”

means, and how long it should take for an item to progress through the columns.

Key concepts in KANBAN
 Work in progress (WIP) limits: Teams can set WIP limits in a column, groups of

columns, or the entire board. This means a column with a WIP limit of five

can’t have more than five cards in it at a time. If there are five, the team

must tackle the tasks in that column before new ones can be moved in.

WIP limits can help surface bottlenecks in the production process.

Setting WIP Limits

Key concepts in KANBAN
 Kaizen : Meaning “improvement” in Japanese, kaizen encourages a

mindset to continually better the process. This encourages all team

members to share their insights and work to improve the team, not just

managers.

Kanban vs. Scrum: Which should I
choose?

 Kanban and Scrum each have their separate strengths. But putting Kanban against Scrum is a false
dilemma; you can easily use both in your work to maximize the benefits.

When to use Kanban:

 Kanban is to improve visibility, foster a culture of continuous improvement, and increase productivity.

 Kanban can fit in with processes that already exist—including Scrum. If you don’t want to overhaul your
entire work process but are hoping to gain the benefits that an Agile process can bring, Kanban can be a
good way to start.

When to use Scrum:

 Scrum has been linked to higher productivity, faster delivery, lower costs, and higher quality. Many project
managers also see Scrum as an effective method to tackle complex projects, or projects that might see
frequent change.

 Scrum can make sense to use if you’re in an industry that sees frequent change, or if your project might
need space to adapt to feedback. This might include industries that have frequent technology updates, or
projects creating new products.

Scrumban: choosing both

 Scrumban is a hybrid method that combines both Kanban and Scrum. Scrumban uses the processes of
Scrum and the visualization tools of Kanban. Scrumban can be a good way for teams familiar with either
Scrum or Kanban to incorporate the other into their process.

Kanban vs. Scrum: Similarities and

differences

 The similarities and differences between Kanban and Scrum can be

summarized as follows:

 Kanban and Scrum are both methodologies that allow projects to adapt to

change, encourage engagement by all team members, have short

development cycles, and increase transparency.

 Kanban is a methodology centered around visualizing tasks, while Scrum is

a methodology that structures workflow and team culture to deliver

projects in short timelines.

 Kanban delivers tasks continuously until the project is finished, while Scrum

delivers chunks of deliverables in one- to four-week periods.

Methodology Kanban Scrum

Roles No defined roles

Scrum master, product

owner, and

development team

Delivery cycle Continuous
Sprint cycle lasts one to

four weeks

Change policy
Can be incorporated

any time

Generally not made

during sprint

Artifacts Kanban board

Product backlog, sprint

backlog, product

increments

Tools

Jira Software, Kanbanize,

SwiftKanban, Trello,

Asana

Jira Software, Axosoft,

VivifyScrum,

Targetprocess

Key concepts or pillars
Effective, efficient,

predictable

Transparency,

adaptation, inspection

Kanban vs. Agile

 Agile is a set of project management principles that encourage an

adaptive and iterative way of approaching project management.

 Agile is an overarching philosophy, and not a set of tools or processes.

 It emphasizes flexibility over following a plan, and is often used for projects

that are met frequently with change.

 Kanban, on the other hand, is an Agile methodology. This means it offers

the specific tools and processes to implement Agile.

 It exhibits many principles characteristic of Agile, including the capacity to

adapt to changes, and transparency across the team.

LEAN

 Lean development is the application of Lean principles to software

development.

 Lean principles got their start in manufacturing, as a way to optimize the

production line to minimize waste and maximize value to the customer.

These two goals are also relevant to software development, which also:

 Follows a repeatable process

 Requires particular quality standards

 Relies on the collaboration of a group of specialized workers

 Manufacturing deals with the production of physical goods, while the value

being created in software development is created within the mind of the

developer.

7 Lean Development Principles

 The seven Lean principles are:

 Eliminate waste

 Build quality in

 Create knowledge

 Defer commitment

 Deliver fast

 Respect people

 Optimize the whole

Eliminate waste

One of the key elements of practicing Lean is to eliminate anything that does not add value to
the customer

 Unnecessary code or functionality: Delays time to customer, slows down feedback loops

 Starting more than can be completed: Adds unnecessary complexity to the system, results in
context-switching, handoff delays, and other impediments to flow

 Delay in the software development process: Delays time to customer, slows down feedback
loops

 Unclear or constantly changing requirements: Results in rework, frustration, quality issues,
lack of focus

 Bureaucracy: Delays speed

 Slow or ineffective communication: Results in delays, frustrations, and poor communication
to stakeholders which can impact IT’s reputation in the organization

 Partially done work: Does not add value to the customer or allow team to learn from work

 Defects and quality issues: Results in rework, abandoned work, and poor customer
satisfaction

 Task switching: Results in poor work quality, delays, communication breakdowns, and low
team morale

Build quality in

 Every team wants to build quality into their work.

 In Lean development, quality is everyone’s job, not just that of the quality analyst.

 Lean development tools for building quality in:

 Pair programming: Avoid quality issues by combining the skills and experience of two
developers instead of one

 Test-driven development: Writing criteria for code before writing the code to ensure it meets

business requirements

 Incremental development and constant feedback

 Minimize wait states: Reduce context switching, knowledge gaps, and lack of focus

 Automation: Automate any tedious, manual process or any process prone to human error

Defer commitment

 Defer Commitment does not mean that teams should be flaky or irresponsible

about their decision making.

 To defer commitment means to:

 Not plan (in excessive detail) for months in advance

 Not commit to ideas or projects without a full understanding of the business requirements

 Constantly be collecting and analyzing information regarding any important decisions

 This Lean principle encourages team to demonstrate responsibility by keeping their

options open and continuously collecting information, rather than making decisions

without the necessary data.

Respect for people

 It applies to every aspect of the way Lean teams operate, from how they

communicate, handle conflict, hire and on board new team members, deal with

process improvement, and more.

 Lean development teams can encourage respect for people by:

 Communicating proactively and effectively

 Encouraging healthy conflict

 Surfacing any work-related issues as a team.

 Empowering each other to do their best work

Deliver fast

 Every team wants to deliver fast, to put value into the hands of the

customer as quickly as possible.

 Common culprits that slows down are

 Thinking too far in advance about future requirements

 Blockers that aren’t responded to with urgency

 Over-engineering solutions and business requirements

 Lean development is based on this concept:

 Build a simple solution, put it in front of customers, enhance incrementally based

on customer feedback.

Optimize the whole

 Suboptimization is a serious issue in software development. Mary and Tom

Poppendieck describe two vicious cycles into which Lean development teams

often fall.

 The first is releasing sloppy code for the sake of speed.

 Developers release code that may or may not meet quality requirements. This

increases the complexity of the code base, resulting in more defects.

 The second is an issue with testing.

 When testers are overloaded, it creates a long cycle time between when developers

write code and when testers are able to give feedback on it. This means that

developers continue writing code that may or may not be defective, resulting in

more defects and therefore requiring more testing.

Optimize the whole

 Optimising the whole is an antidote to sub
optimization with a better understanding of
capacity and the downstream impact of
work.

 It’s based on the idea that every business
represents a value stream –

 the sequence of activities required to design,
produce, and deliver a product or service to
customers.

 If our goal is to deliver as much value to our
customers as quickly as possible, then we have
to optimize our value streams to be able to do
just that.

 To understand how to optimize our value
streams, first we have to properly identify them.

References

 https://www.projectmanager.com/kanban

 https://www.coursera.org/articles/kanban-vs-scrum

 https://www.planview.com/resources/articles/lkdc-principles-lean-

development/

 What is Agile Kanban Methodology? Learn the Methods & Tools

(inflectra.com)

 What Are Kanban Swimlanes and How to Use Тhem? (kanbanize.com)

 https://www.plutora.com/blog/lean-software-development

https://www.projectmanager.com/kanban
https://www.coursera.org/articles/kanban-vs-scrum
https://www.planview.com/resources/articles/lkdc-principles-lean-development/
https://www.inflectra.com/Methodologies/Kanban.aspx
https://kanbanize.com/kanban-resources/kanban-software/kanban-swimlanes

